A USP28–53BP1–p53–p21 signaling axis arrests growth after centrosome loss or prolonged mitosis
نویسندگان
چکیده
Precise regulation of centrosome number is critical for accurate chromosome segregation and the maintenance of genomic integrity. In nontransformed cells, centrosome loss triggers a p53-dependent surveillance pathway that protects against genome instability by blocking cell growth. However, the mechanism by which p53 is activated in response to centrosome loss remains unknown. Here, we have used genome-wide CRISPR/Cas9 knockout screens to identify a USP28-53BP1-p53-p21 signaling axis at the core of the centrosome surveillance pathway. We show that USP28 and 53BP1 act to stabilize p53 after centrosome loss and demonstrate this function to be independent of their previously characterized role in the DNA damage response. Surprisingly, the USP28-53BP1-p53-p21 signaling pathway is also required to arrest cell growth after a prolonged prometaphase. We therefore propose that centrosome loss or a prolonged mitosis activate a common signaling pathway that acts to prevent the growth of cells that have an increased propensity for mitotic errors.
منابع مشابه
53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis
Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evok...
متن کاملMitotic cells get a stress test
Before they enter mitosis, cells duplicate their centrosomes so that they can form a proper, bipolar mitotic spindle. Cells with only one centrosome—or even no centrosomes at all—can still divide, but they tend to make errors in chromosome segregation. Healthy, nontransformed cells therefore apply the brakes when they lose their centrosomes, and arrest by up-regulating the tumor suppressor p53....
متن کامل53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration
In normal human cells, centrosome loss induced by centrinone-a specific centrosome duplication inhibitor-leads to irreversible, p53-dependent G1 arrest by an unknown mechanism. A genome-wide CRISPR/Cas9 screen for centrinone resistance identified genes encoding the p53-binding protein 53BP1, the deubiquitinase USP28, and the ubiquitin ligase TRIM37. Deletion of TP53BP1, USP28, or TRIM37 prevent...
متن کاملA New Mode of Mitotic Surveillance.
Cells have evolved certain precautions to preserve their genomic content during mitosis and avoid potentially oncogenic errors. Besides the well-established DNA damage checkpoint and spindle assembly checkpoint (SAC), recent observations have identified an additional mitotic failsafe referred to as the mitotic surveillance pathway. This pathway triggers a cell cycle arrest to block the growth o...
متن کاملp21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells.
A recent hypothesis suggests that tumor-specific killing by radiation and chemotherapy agents is due to defects or loss of cell cycle checkpoints. An important component of some checkpoints is p53-dependent induction of p21(cip-1/waf-1). Both p53 and p21 have been shown to be required for microtubule damage checkpoints in mitosis and in G1 phase of the cell cycle and they thus help to maintain ...
متن کامل